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TECHNICAL MEMORANDUM

EVALUATION OF MICROCRACKING IN TWO CARBON-FIBER/EPOXY-MATRIX

COMPOSITE CRYOGENIC TANKS

1. INTRODUCTION

When a composite laminate is stressed, several damage modes such as matrix microcracking,

delamination, and fiber breakage are often observed before final failure. Matrix microcracking is gener-

ally the first damage mode observed in a laminated composite. Microcracking generally occurs at load

conditions well below final fracture and generally has little effect on the overall strength of the compos-

ite laminate. However, microcracking can lead to other damage modes, alter the elastic properties, and

increase the laminates' permeability to gases and liquids. Increased permeability is of particular concern

when the composite is used as a pressure vessel.

Microcracks typically initiate in plys transversely oriented to the applied load. The transverse

load is a result of both mechanical and thermal load. Because of the coefficient of thermal expansion

(CTE) mismatch between axially and transversely oriented plys, high residual tensile stresses occur in

the transverse direction of a composite ply when the composite laminate is cooled following cure.

Further cooling in cryogenic applications exacerbates this condition. Microcracking can occur in some

laminates due to thermal effects alone.

The microcracking characteristics of two different composite tanks were evaluated. The micro-

structure of the X-33 liquid hydrogen (LH2) tank was examined. Laminates representative of the

Marshall Space Flight Center (MSFC) Composite Conformal, Cryogenic, Common Bulkhead, Aerogel-

Insulated Tank (CBAT) were also examined. Tensile tests were performed on the laminates to induce

microcracking. The tensile tests were performed at ambient and cryogenic temperatures. The microcrack

density and applied stress were recorded. A model successfully predicted microcrack density in the

X-33 laminate but was less successful with the CBAT laminate.



2. TESTING

2.1 Composite Conformal, Cryogenic, Common Bulkhead, Aerogel-Insulated Tank

The CBAT was constructed of a combination of hand-laid fabric and polar-wound tow.

Flat panels representative of the tank acreage were fabricated for microcracking experiments. Tensile

specimens were machined from the flat panels. The layup was (45F/+6T/90F2/+6T) s orientation of

IM7/977-2 material and the specimens were machined in the Y (90 deg) orientation. By loading the

laminate in the Y orientation, transverse stress was applied to the +6 plys. Tensile specimens were tested

at -320 °F and 72 °F. The specimens were pulled to incrementally higher loads before being cross-

sectioned and examined for microcracks.

While immersed in liquid nitrogen, eight specimens were loaded to 4.6, 8.8, 14.4, 18.4, 21.4,

26.5, 46.2, and 60.1 ksi. After testing, the samples were sectioned longitudinally with a water-cooled

diamond saw. The cross sections were polished and examined for microcracks at × 50 and × 100 magni-

fication. The microcracks generally spanned the entire width of the test specimen. The microcracks also

spanned the thickness of the +6 ply group. Therefore, no cross sections were performed on the room

temperature tests. Only the polished edges of samples were observed. This allowed the same sample to

be tested at smaller loading increments and observed between loading cycles until tensile failure.

2.2 X-33 Liquid Hydrogen Tank

The X-33 LH 2 tank lobes were a sandwich construction. A failure occurred after the 42.5 psi

LH 2 proof test. The inner skin of one of the lobes separated from the sandwich honeycomb core due to

pressure buildup in the honeycomb core. The inner skin was of interest in this study, because micro-

cracking was observed in the inner skin. 1 Tests performed during the X-33 failure investigation deter-

mined that mechanical loading at room temperature or thermal cycling without mechanical loading

initiate microcracks only in the outer ply of the laminate. The investigation determined that extensive

microcracking occurred throughout the inner skin of the tank during the proof test due to a combination

of the thermal and mechanical loads. The X-33 LH 2 tank failure investigation concluded microcracking

allowed hydrogen infiltration into the sandwich core. 1 The investigation also concluded that studies on

microcracking of composite laminates while under load at cryogenic temperatures are needed. 1

The inner skin of the lobes was 13 plys of IM7/977-2 fiber-placed tow in a (45/903/-45/01.5) s

orientation. The 0-deg plys were oriented in the longitudinal direction. Significant cracking was ob-

served in the 45- and 90-deg plys, while lower densities were observed on the 0-deg plys. Cracks in the

-45-deg plys were a rare observation. Crack densities in the center 0-deg plys were relatively constant at

various positions on the tank. However, the densities on 90-deg plys varied significantly. In some sec-

tions the inner 90-deg ply had a high density while the outer ply had a low density. In some sections, the

trend was reversed. This suggests there may have been bending moments on the inner skin.

2



Tensilespecimenswerecutfrom theinnerskinof thetank.Specimenswerecut in the0-, 45-,
and90-degorientations.Thesespecimensweretensiletestedto incrementallyhigherloads.Thesample
wasexaminedfor microcracksbetweeneachloadingcycle.Thesetestswereperformedatboth72 °F
and-320 °F.As with theCBAT tests,thespecimenswereexaminedfor microcracksaftereachload
increment.
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3. TEST RESULTS AND ANALYSIS

3.1 Mathematical Model of Microcracking

Two methods of modeling microcrack density in the two laminates were attempted. One method

uses variational mechanics in conjunction with energy release rate failure. 2,3 A shear lag model in

conjunction with energy release rate was also attempted. Garrett and Bailey, 4 and Lee and Daniel 5 have

performed much work in the area of shear lag analysis on composite laminates. The shear lag/energy

method of modeling in this report is based on the work performed by Laws and Dvorak 6 and

McManus and Maddocks. 7,8

Both methods result in a hyperbolic trigonometric function for crack density versus applied

stress. Thus, the initial slope of the curve is infinite rather than small as observed in experimental data.

The curves begin to match the experimental data as crack densities increase. So, both methods are more

accurate for modeling progressive microcracking rather than the onset of microcracking.

The shear lag/energy model seemed to fit the experimental data better than the variational

mechanics/energy model. Therefore, only that method will be discussed in this Technical Memorandum.

To simplify modeling of the (45F/+6T/90F2/+6T)s CBAT laminate, the +6T plys were assumed to have

the same transverse elastic properties as 0-deg plys. Based on the Classical Lamination Theory (CLT),

there is little error in this assumption. However, this assumption and the orientation of the microcracks

may explain why a higher critical strain energy release rate (Glc) was observed in the CBAT laminate
than the X-33 laminate.

If the transverse ply of interest is assumed to have a thickness of 2d, the remainder of the com-

posite is 2b (fig. 1). Stress is transferred to the transverse ply by shear between two cracks. At large

crack spacing (2h), the stress within the transverse ply approaches that of an uncracked laminate. At high

crack densities, the stress transfer is less effective.
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Figure 1. Shear lag model.

The shear lag analysis follows. Balancing forces in the laminate in figure 1 yields:

-b dc_b d dc_ d H(u- v) ,
dx dx

where H is a constant and u and v are displacements in the b and d layers of the laminate. Various au-

thors have presented differing values for the H constant. Garrett and Bailey suggest

H - G23
bd '

while

H = 3G12G23

b(bc23+dc12)

is suggested by Lee and Daniel. In either case the constant is proportional to the shear modulus of the

transverse ply. Taking the second derivative of stress with respect to x gives:

d2(y d H ( du dr)dx2-d N 7 '

(])

(2)

(3)

(4)
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where

and

du _ cyb + abAT
Tx : Eb

(5)

dly

---_x =,Sd = Od + adA T .
Ed

This results in the second order differential equation:

(6)

d2Gd O2G d + F(G)=O
dx 2

(7)

where

O2_HEc(b+d) (8)

EbEdbd
and

F(c_): Ed c_a - Ed(ad -ao)AT.
Eo

(9)

F(_) is the sum of the mechanically induced stress and residual thermal stress on the transverse ply. The

term could also incorporate other stresses such as those induced by moisture gain. The general solution 8

to the above differential equation is

F(o-) (lO)
c_d = C1eox + C2 e-ox + 0------T-

Solving for constants at the boundary conditions o-d = 0 at x = +h and simplifying the exponential terms

by converting to hyperbolic terms results in the solution for tensile stress in the transverse ply,

cosh(Ox)] (11)G d = F(G) 1 cosh(Oh)) "

The shear stress at the interface of the transverse ply and the rest of the laminate (b-d interface) may also

be determined by differentiating the stress,

d dGd dOF(G)( sinh(Ox)]
¢= dx = t-cosh(Oh))"

(12)
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Based on the above equations, the stress distribution within the transverse ply can be plotted

as a function of distance between two microcracks. The tensile stress within the transverse ply

approaches the stress of the uncracked ply for large crack spacing. As the crack spacing decreases,

the transverse ply carries less tensile load (fig. 2). However, the shear stress is still present. Thus, diago-

nal cracks begin to appear due to the shear stress at higher crack densities. These diagonal cracks are

followed by delamination.

The strain energy can be used to predict the formation of microcracks. The Griffith energy

theory states

dW dU (13)AG-
dA dA

where W is work, U is strain energy, and A is microcrack surface area. The change in work is the differ-

ence between work applied to the two cracked segments h after failure and the uncracked segment 2h

prior to fracture. The strain energy is determined in the same manor. The strain energy release rate can

be calculated as

AG = --H-- t_o-) 2tan
(14)

Theoretically, cracking initiates when AG > Glc, where Glc is the critical strain energy release

rate. However, due to defects and statistical variations in the properties of the composite, cracking will

initiate at lower stresses than predicted. Thus, the first microcracks observed occur at strain energy

release rates lower than Glc. As the strain energy approaches Glc, the microcrack density will rise

rapidly. At higher microcrack densities, the transverse ply loses its ability to carry much tensile stress.

Thus, the rate of increase in microcracks per applied stress begins to diminish.

¢/1
¢/1

.m
m

E
o

Z

0.5

-0.5

-1

h_=5

s

h_=lO h_=2.5 h_=7.5

' i -- Tensile Stress' .... Shear Stress

Figure 2. Stresses within a cracked ply of a composite laminate with

various crack lengths (2h).
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3.2 Composite Conformal, Cryogenic, Common Bulkhead, Aerogel-Insulated Tank

The microcracks in the CBAT laminate were not parallel to the fiber direction, +6 and -6 deg,

as is typical of a cross-ply laminate. The cracks were perpendicular to the loading direction. Thus, the

cracks periodically shift planes so the crack could penetrate both the +6 and the -6-deg plys (fig. 3). The

crack density increases slowly with increasing load. The initial cracks may be defect related as in figure

4. As the load is further increased, the slope of the crack density versus applied stress increases dramati-

cally. Eventually, as failure load is approached, the slope begins to decrease. This decrease in slope is

because the transverse ply carries less load and other failure modes are beginning to occur. Figures 5 and

6 illustrate the trend in crack density versus applied load for the CBAT laminate.

Y

x

Microcrack

Figure 3. Crack in CBAT laminate (x-y plane).

Figure 4. (a) First microcrack occurs on void and (b) failure occurs on the same void.
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applied tensile load.

3.3 X-33 Liquid Hydrogen Tank

As with the CBAT laminate, a curve of microcrack density versus applied stress was produced.

Again, microcrack initiation was gradual. The density then increased rapidly with increasing stress

followed by a tapering of the slope prior to specimen failure.

The crack density versus applied load was calculated from equation (15). This was performed for

both longitudinal and hoop orientations at 72, -320, and -423 °F. The Glc for 72 °F was chosen to fit the

experimental data. From fracture mechanics,

G1 c _ _z°2 h (15)
E
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where Q is a geometry factor. If all other parameters are constant, strain energy release rate (G) is in-

versely proportional to modulus (E). Thus, as the modulus increases due to cooling, the strain energy

release rate decreases. The values used for Glc were 1.3, 0.9, and 0.8 in.-lb/in. 2 for 72, -320, and -

451 °F, respectively. These values are an order of magnitude lower than those reported by Nairn 2 and

one-half those reported by Fiberite. 1° These lower values warrant further examination. Figures 7 and 8

illustrate the trend in crack density versus applied load for X-33 laminate.
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4. CONCLUSIONS

The shear lag/energy analysis modeled the crack density versus applied load quite well for the

X-33 tank inner skin. The method was less successful at modeling the CBAT laminate. The CBAT

laminate exhibited a higher crack density than predicted by the model. The model could more accurately

predict microcrack density by adjusting the constant (H).

The model will not predict crack initiation since the first cracks that appear are due to defects and

local variations in properties. A statistical approach should be used to model the initial cracking.

The modeling of crack density is highly dependent upon accurate elastic and thermoelastic

properties over the temperature ranges evaluated. One problem with the current model is that it does not

account for the temperature dependence of the CTE. The temperature dependence of the CTE makes the

residual stresses within the laminate subject to error. Another problem is that the model is based upon

uniaxial stress. A cryogenic tank, such as the X-33 tank, is subject to biaxial stress conditions. A lami-

nate that is tensile tested to the same hoop or longitudinal stress conditions of the tank will be subject to

different (generally higher) strains than the tank. Additional work is needed to further characterize the

IM7/977-2 at LH 2 temperatures.
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